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ABSTRACT 

An approximation scheme is  developed f o r  calculating the 

equilibrium properties of a system containing both short range and weak 

long range interactions. 

of the pair correlation and equation of state f o r  an electron gas 

i n  a neutralizing background. Although the s t a r t i ng  point i s  the 

B-BG-K-Y hierarchy, the short-ran@ divergence usually encountered 

i n  the "dynamic" approach i s  avoided, and the resu l t s  (calculated 

through second order i n  the plasma parameter) are found t o  be 

i n  agreement with previous calculations by diagrammatic methods. 

The resu l t s  a re  applied t o  the calculation 

A V W O K  
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1 Introduction 
Most previous derivations', 2~ 3 of the equilibrium properties of 

plasma have r e l i ed  on the diagrammatic techniques introduced by Mayer4,5. 

While t h i s  approach has been elegantly systematized by Meeronl, the physical 

motivation f o r  the choice of diagrams seems unclear; furthermore it does 

not appear possible t o  generalize the method t o  non-equilibrium situations.  

A second type of approach involves the approximate solution of 

coupled integro-differential  equations ( t h i s  i s  sometimes called the 

"equation of motion" method), and has been used quite successfully by 

Ebgoliubov6 and o t h e r s 7 ~ ~ ~ 9 ~  However a l l  attempts t o  carry the theory 

beyond first order i n  the plasma parameter have encountered a short-range 

divergence. Sueh divergences a re  of two types: (1) For a multicomponent 

plasma, the presence of a t t rac t ive  forces leads t o  a divergence unless 

bound s t a t e s  are  taken i n t o  account, 

have been adequately t reated by any method (however cf.  Theimerl*). 

(2)  Even f o r  purely repulsive forces (e.g. the electron gas i n  a uniform 

posit ive background) a divergence occurs if one makes the usual assumption 

t h a t  the Coulomb potent ia l  i s  much l e s s  than the thermal energy. 

This d i f f i cu l ty  seems never t o  

This i s  

clear ly  a l e s s  fundamental difficulty,  and i s  a consequence of the approxima- 

t i o n  method. 

The present work employs a method similar t o  that of Bogoliubov 

i n  which divergences of type ( 2 )  do not occur. They are avoided by s p l i t t i n g  

the Coulomb poten t ia l  up into two parts, one of which i s  weak (i .e.  

< < k T 

always 

)> and the other short range- (compared t o  the in te r -par t ic le  spacing ). 
.. 
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W e  w i l l  show that such 8 division is  

small plasma parameter. 

4 
* *  

lways pos 

. .  

ib le  f o r  system with 

The resu l t s  include w h a t  i s  believed t o  be the f irst  "dynamic" 

derivation of the equation of state for  an electron gas which is correct 

through second order i n  the plasma parameter. 

w i l l  be used t o  derive a convergent kinet ic  equation for  the electron gas.  

In  part 11, a similar method 

2. General Formalism 

While we are primarily interested i n  the electron gas i n  a 

neutralizing backround, we avoid immediate specialization t o  t h i s  case 

so that the theory may a l so  be applied t o  other systems (e.g. multi- 

component plasmas with repulsive cores). We suppose an a rb i t ra ry  number 

of types with N u  of type u . The pa r t i c l e s  are  numbered f r o m  

1 t o  N 5 C N ,  

and i ts  type a i  . We shall use the shorthand x is(fli, ai). 

and the ith par t ic le  is specified by i ts  position - R i  

The c lass  of systems under consideration are those f o r  which 

4 

the interaction between any two par t ic les  of the s a m  o r  d i f fe ren t  types 

may be s p l i t  in to  two parts IJI and @ such that 

4x a3u .,. 
<< 1 , a l l  u , T ; 

V 

where 
v = lim V 

N 
p m  - 
v+ 

- 2 -  



and 

* (  U ,  7 )  < 
e 

where 8 i s  the temperature 

, a l l  IE 

in energy units. 

The spatial s-par t ic le  dis t r ibut ion function i s  defined by 

( 3 )  

where 

Taking the gradient of (4) w i t h  respect t o  the posit ion of the ith 

par t ic le  and l e t t i n g  V + W ,  N + m ,  V/N f i n i t e ,  one f inds the 

hierarchy of equations 

+ * ( x i , x  ) ]  = O  

Here we have suppressed the arguments X i  ... X,, and used the shorthand 

( 7 )  

- 3 -  



It i s  usef'ul t o  divide out a Boltzmann factor  f o r  t h e  

i.e. we s e t  

J I  - potential ,  

n, = m, & Y S h  ( 9 )  

where 

i=1 
and 

i s  the function introduced by Mayer. W e  note that 

As boundary conditions we must require t h a t  the correlation 

between the par t ic le  posit ions must vanish as the pa r t i c l e  separations 

go t o  m . I n  our normalization t h i s  i s  equivalent t o  
S 

- 4 -  
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The next three sections are devoted t o  an approximation scheme fo r  

solving (10) with the boundary conditions (14) and the basic assumptions 

( 1 1 9  (3). 

3. Ordinary Gas Mixtures 

In  order t o  i l l u s t r a t e  the methods we w i l l  first- consider two 

special  cases. 

f o r  which we may take 0 

i s  short  range). 

The f i r s t  of these is  the case of ordinary gas mixtures, 

t o  be identically zero (i.e. the en t i re  potent ia l  

Then (10) i s  simplified t o  

It follows tha t  the right hand side w i l l  be smaller than the l e f t  by a 

factor  of order 4n a3 where i s  the largestlof the a b  (according 
V 

t o  (1) t h i s  factor w i l l  be small). This suggests an  expansion of the 

ms 

i .e. 

i n  powers of the density corresponding t o  the usual v i r i a l  expansion 

(+) Substi tuting (16) i n  (15)  and equating l i k e  powers of 

om f inds 

- 5 -  
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I n  cth order one has 

(0) = 0 v; Els 

o r  N 
= const = + ( ii ) 

i=1 

where the constant has been determined from (14). 

The first order equation i s  

or 

The constant is  again determined by the boundary condition, which requires 

The l i m i t  of the in tegra l  i n  (20) i s  determined by using the expansion 

(11) f o r  f s  i n  terms of the Mayer f ' s  and observing that terms containing 

two o r  more Mayer functions will give no contribution t o  the in tegra l  i n  

the l imi t  as a l l  R i p m .  Thus 

and 

- 6 -  



The second order calculation, of which we omit the detai ls ,  gives 

2 ( 0) N S 
(*) = ”. { pL ( f s  (x) - c f ( X  i , X  1) ] 

2 1 *S 

One could go on i n  t h i s  fashion to  any desired order i n  the small parameter, 

11 although it seems d i f f i c u l t  t o  calculate the general tem(however cf .Cohen ) . 
4. Weak Interactions 

The second special  case we w i l l  consider i s  the class  of systems 

f o r  which the interaction potential  i s  <<8 f o r  a l l  par t ic le  separations. 

While such systems appear t o  be rare,their  consideration w i l l  prove useful 

i n  understanding systems, such as a plasma, where th? interaction i s  weak 

through most of i t s  range. 

I n  t h i s  weak interaction l i m i t  we may s e t  the Jr’s and f ’ s  

equal t o  zero t o  obtain 

In  view of our assumption ( 3 )  about the nature of the potent ia l  

second term w i l l  be smaller than the first by a t  l e a s t  a factor  of @-/e. 

, the 

On the other hand the integral  term may be estimated as the gradient of 

3 4 ~ < k  RQ 
a function which has the order of magnitude 

8 V  

where <b is  the average potential  and Ro i s  the range (as a f’unction 

- 7 -  



of 3 ) of ( x i , x  ) or ms+l ( x  .... x s , x  ), whichever i s  smaller. 

For a plasma, R, i s  the Debye length, and 
2 e <* = - 

RO 

thus the integral  term i n  (25) i s  the same order of magnitude as the f irst  

term. Thus the s i tuat ion f o r  weak, long range forces is  exactly the reverse 

of tha t  f o r  the short range interactions discussed i n  Section 3.  

These considerations suggest that a suitable approximation scheme 

f o r  the solution of (25) would be t o  formally introduce a parameter E 

i n  f ront  of the second term, expand ms 

powers. 

i n  powers of E , and equate l ike 

The only d i f f i cu l ty  with t5is approach i s  tha t  the resul t ing 

equations relate a given approximation fo r  ms t o  ms+l  i n  the same 

approximation. 

it i s  convenient t o  introduce a second parameter (say 6 ) as the co- 

Therefore, i n  order t o  insure a determinate set of equations, 

e f f i c i en t  of the integral  term. Since, as noted above, the in tegra l  term 

w i l l  not be small i n  general, we may not treat 

and must include a l l  powers of 6 f o r  each power of E . Physically, 

t h i s  corresponds t o  considering, instead of a Coulomb potential ,  a Yukawa 

6 as a small parameter, - 
- 

- aR 
potent ia l  ( -R e dependence) with a large enough t o  ensure convergence of 

the in f in i t e  SUmS which occur; the r e su l t s  are then analyt ical ly  continued 

down t o  a! =O ( t h i s  notion was first  introduced by Mayer5). I n  t h i s  sense, 

as a l i m i t  of the results fo r  a screened potential ,  the results will be 

unique. 



. 

expand ms 

For bounday conditions, we require 

The solution of (29 )  with (28) i s  

and ( 3 0 )  with q =1 becomes 

where the last s tep follows because 3( %,X ) depends on ,Ri , R only - 



through 18 - ,R I . In view of (28), (32) implies 

= o  (0,l) m s 

and it immediately follows from (28) and (30) that 

and 

(33) 

Turning t o  p =1, one f inds 

where we have used (34). Thus 

( t h i s  would be the leading signifigant term if 

range). 

@ were - both weak and short 

Substituting (37) into (36) w i t h  q= l  , and noting that (cf.  (6)) 
S 

Q s+l ( X 1 * * - X s , X )  = o s  ( X l * * * * X J  + j =1 @ O $ , X )  , (38) 

one finds 

- 10 - 



where we have introduced the 

(4 n 
@ S  =(-&) c c  

i< jgs 

It is easy to show that 

and in general (as may be 

substitution into (36) 

The total contribution to 

proved by induction or verified by direct 

first order in the ratio of potential to 

thermal energy is given by summing over 4 : 
D 

- - - m s  
(1) (l,¶) mg = C ms 

¶=O 

- 11 - 



The quantity 

is the sumned contribution of a l l  "chain type" interactions in which each 

par t ic le  is interacting w i t h  only two others, 

the (possibly) infinite range potent ia l  as by a shielded potential .  

If 4 is the Coulomb potential ,  it is easy t o  show that % w i l l  be 

the Debye potential. In Section 6 we will calculate +,, for a sligbtly 

different  choice of 

have been obtained by omitting t k  6 

Ansat2 

This effectively replaces 

. It should be remarked that (45) could also 

expansion and introducing t& 

our txeatment, (47) appears as a consequence ra-r than an additional 

assumption. 

For p=2 , (27)becomes 

The algebra involved in solving these equations is considerably more  

involved than that of t h  first order equations, so we will bnre aremly 

state the result (c f .  work in footnote 7 for details ): 

- 1 2 -  
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a s  expected, (49) and (45) depend on 6 only through the shielded potent ia l  

i n  the short. range case, we w i l l  not go beyond second order. !Do As 

The General Case 5 .  -I 

We now return t o  the general s i tuat ion where neither $ nor 9 

are  zero, rewrite (10) as 

and study it term by term. 

re la t ive  magnitudes of the first three terms as 

4xa3/ v : o m x / ~  

Just as i n  Section 3 and 4 we estimate the 

1 : 

- 13 - 



%cause of the factor  f s ( X ) ,  

a range of o rde r  EL, 

(431 a3/v) (<e/ 8 ), 

The last tern is  more d i f f i cu l t ,  since it i s  sensit ive t o  the range of 

m,+l (x) .  There w i l l  be some terns  i n  m,+l ( X )  which contain JI 

i n  such a way that the i r  range i s  of order 

t o  the f i f t h  t e rn  w i l l  again be proportional t o  both small parameters. 

the integrand of the fourth term w i l l  have 

and i t s  relat ive magnitude may be estimated as 

i.e. proportional t o  both s m a l l  parameters. - 

a ; t h e i r  contribution 

On the other hand, there will be some terms (such as those independent 
/ J / 3  

of $ ) which may have a range 3 ( V 8 ) .; their contribution w i l l  
< 4 9  

be O(1). 

into two parts: 

Thus it is  convenient t o  s p l i t  the function m s + l  ( X1...XS,X) 

where 5is+l ( X)  consists of a l l  terms i n  ms+l ( X  ) which vanish 

fo r  

< <  1 ,  4 TI b3 - FlI > b , i = l...s ; 
V 

and %s+l ( X) contains a l l  the remaining terns.  (This division may be 

made unique by expressing the resu l t s  i n  te rns  of the usual graphs; the 

essent ia l  point i s  tha t  Es+l contains a l l  contributions whose range 

i s  determined by the range of JI ) . 
We will now intrcxiuce three formal parameters in to  (10): 

A , the "range parameter" f o r  Jr , and E and 6 , which have t he  

same signifigance as i n  Section 4 (it i s  not convenient t o  use ( ~ J V )  

- 14 - 



as a parameter as i n  Section 3, since it occurs i n  a t  l e a s t  one place 

where it may not be t reated as small). 

the relative magnitude of the terns i n  (lo), w e  may w r i t e  it as 

I n  view of the above discussion of 

we r e i t e r a t e  that the intorduction of the formal parameters i n  (10 ') 

i s  a way of noting tha t  the relat ive magnitudes of 

4 n  a3 
1: ( ): Q max 

8 ( 4T3) 
the terms are 

(+) + (+) 

where a i s  the range of  I), and Ro is  the range Of * D  we then 

make a t r i p l e  expansion of 

- 
ms 

and equate l i k e  powers t o  f ind 

- - 15 - 



For p=q=O , the equations are the same as those i n  Section 3, 

save fo r  the factor  of I i n  f ron t  of the integral .  Thus we may 

inmediately write 

V 

I 

S l >  

Jus t  as i n  Section 4, one eas i ly  shows that 

Further, since m ~ ~ i o ~ o )  ( X  ) 

range contributions which vanish f o r  

on ~ r ,  not ), 

and m s + i  (2 O j 0 )  ( X  ) contain only short 

\Ei - f! I> 2a (they depend only 

- 16 - 



On the other hand, if n=O the equations are independent 

of JI , thus 

and the equations and results reduce to those of Section 4 [ equations 

(441, (411, (421, (4913 

If we assume that the two small parameters are the same order of 

magnitude, and restrict ourselves to contributions up to second order, the 

only new equations are for n=p=l: 

and 
(0) 

- 17 - 



is  evident that (60) i s  of the form 

Vi F(X l . . . . X s )  = 0 ; 

it i s  only necessary t o  determine the constant so that the boundary condi- 

t ion  

3 

a l l  R.,j 4 03 

is  satisfied. The result i s  

8 N 
m (0) 

(lJ-,o) = -e jk  2 { c p s  [fs ( x )  - c f (  X i , X ) ]  
V9 N i=l mS 

> ( b 1 , O )  We may expect that ms (l’l’q) wil l  contain terms l ike those i n  ms 

Thus it with replaced by the convoluted potent ia l  (- 1 ) q  e v  9 ’  

is  useful t o  make the substi tution 

- s  (63) 

where 

o( 1,1,0 1 
The cr i te r ion  f o r  calculating the long range par t  ks+l (X ) 

is best expressed in terns of graphs. 

variable X o r  integration variable X, X’, e tc .  

We associate a point with each fixed 

- 18 - 



a factor  d ( x , x/  ) is  represented by a sol id  l i ne  between the points 

x , x’, and a factor  f( X , X q  by a dotted l i n e  ( f  bond). It 

(or  m s + 1  i s  then clear  that th terms wbich contribute t o  k,+l 

w i l l  be those fo r  which each path between the point x and any of the 

points X X contains a t  least  one 0 bond ( t h i s  includes those 

terms independent of X ,  where the point x i s  not connected t o  any of the 

points xi i n  the corresponding grdph). It follows that 

S 

S 
(O) 2 q d X ’ O )  { [ f, (x’) - Z f ( X i , X / ) ]  

+ (-*) ms N N i=1 

S S 

c d , ( X j , X )  + f ( x , x ’ )  c + ¶ ( X i , X ’ )  
j =1 i=1 

where we have used 

and 

- 19 - 



Substi tuting (63) and (65) in to  (61), one f inds 

Summing ( 6 3 ) ,  (64), (70)  over - q gives the result t o  first order i n  

each small parameter: 

S 1 6 

- 20 - 



This completes the calculations through second order. I n  the next 

two sections we w i l l  apply them t o  the calculation of the equation of state 

f o r  an electron gas i n  a positive background. 

6. The Electron Gas; The Screened Potential  

As mentioned i n  the introduction, the main weakness of previous 

dynamic derivations of the equilibrium properties of the electron gas i s  

the assumption that the potent ia l  i s  weak compared t o  the thermal energy, 

which clear ly  cannot be sa t i s f ied  everywhere f o r  point electrons. In  

t h i s  section we show how the Coulomb potent ia l  can be broken into two 

par t s  which satisfy respectively the short range condition (1) and the 

"weakness" res t r ic t ion  (3). 

t o  one type - electrons with charge (-e) ) 
2 

One such division is  (we now specialize 

e S(a-R) 
R 

e2 S(R-a) 

R 

J r ( R )  = 

4 (R) = (73) 

where S ( z )  is  the uni t  s tep f'unction. It i s  only necessary t o  show that  

we can f ind an a such tha t  - 

< <  1 (74) 
4n a3 

V 

2 e 
a 6  < <  1 (75) 

- 21 - 



which insures t h a t  (1) and (3 )  w i l l  be satisfied. 

(75) may be combined as 

Equations (74) and 

Such a choice of a w i l l  be possible provided - 
3 

But t h i s  i s  equivalent t o  the usual condition that the number of pa r t i c l e s  

i n  a Debye sphere should be large, or  that the so cal led plasma parameter 

i s  small, and w i l l  always be assumed. The results will clear ly  not be 

sensit ive t o  the choice of a ,  nor indeed to the par t icular  way i n  which 

the potent ia l  is  divided; f o r  definiteness we choose 

W h e r e  

is  the reciprocal Debye length. For t h i s  choice, the two small 

parameters are equal: 

where E i s  the real small parameter of the problem, the plasma parmeter .  

- 22 - 



We now proceed t o  specialize the resu l t s  of the preceding sections 

t o  t h i s  case; ultimately we w i l l  find the equation of s t a t e  through second 

order i n  E . The first s tep i s  t o  calculate the shielded potent ia l  

@ D corresponding t o  cb . This i s  given by 

B u t  

where 

so 

L y e  J 

where the convergence of the geometric se r ies  under the in tegra l  sign 

has been assumed (actually one should put a fac tor  

insure convergence f o r  a l l  & , one must require a > K . 
i n  (83); t o  

The r e su l t  

i s  continued down t o  a = 0 a f t e r  the sum is done). For our choice of 

e(@, the calculation of & ) i s  t r i v i a l ,  and yields  

- 23 - 



2 
+ ( k )  = 4 n  e cos k a 

k2 

( th i s  i s  also t o  be understood i n  the sense of the hit of the r e su l t  

f o r  a damped potent ia l )  We subst i tute  (85) i n  (84) and make a change 

of variables 

k = K X  

t o  obtain 
m 

2 e2 dX Xsinh  X COS 6 X e D  ( R )  = - 
€I l ' [ x 2  + c o s 6  x ]  

where 

h = K  R 

and 

We wish t o  approximate (87) i n  such a way as t o  give r e su l t s  

correct through E* t o  the quant i t ies  U/ 8 ,  where 2 i s  the 

ensemble average of the N par t ic le  potential .  We w i l l  show that t h i s  

can be done by replacing the cosine i n  the denominator by the f irst  two 

terms i n  a power ser ies :  
m 

Since the integrand i s  an even function of 

by 1/2 the integral  from ( - a0 , m ) 

The calculation i s  straightforward and gives 

X ,  we may replace the in tegra l  

and use the method of residues. 

- 24 - 
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(here we have included a l l  terns  through E i n  9 ( 0 )  / e .  

The remainder in tegra l  i s  

But 

so 

- 25 - 



Tne integral  can again be evaluated by residues; rather than quote the 

rather lengthy result, we merely s t a t e  that it has the form 

The long range par t  is  clear ly  negligible f o r  our purposes; f o r  the 

short range part, we observe t h a t  i n  calculating 

another factor of the potent ia l  and integrate over a small volume of 

radius 2a ; thus we will have an additional factor  of 

U/O , we introduce 

and the contribution of h will a lso  be negligible. - 

It w i l l  be observed that the leading term i n  e D  a t  long range 

A t  short  range, the signifigant i s  j u s t  the Debye potent ia l  as expected. 

term i s  j u s t  the nemtive of the Coulomb poten t ia l  of par t ic les  separated 

by a Debye length. 

a weak a t t rac t ive  effect ive potent ia l  (however the repulsive $ potent ia l  

dominates). 

Thus the "screening" e f f ec t  produces a t  short range 

- 26 - 



7. The Average Energy: Equation of State  and Thermodynamic Quantities 

We now turn t o  the computation of the thermodynamic properties 

The simplest of these t o  calculate i s  the average f o r  the electron gas. 

interaction energy: 

where U, represents the effect  of the neutralizing background. I n  

terms of the two par t ic le  dis t r ibut ion t h i s  may be writ ten as 

2 
U =  l [ d R  - e (n2 ( R )  - 1) = R - 2v 

- -  I dR, ( 4 ~  ( R )  + e  ( R ) )  [ m2(R) - 11 2 v  (99) 

We wish t o  use the resu l t s  of the preceding sections t o  calculate 

U,b W e  will separately 

calculate the contribution of each t e n  of Section 5 ,  and label the 

corresponding contributions t o  U w i t h  the same numbers. We start 

with the contribution of mio) = 1 : 

through second order i n  the plasma parameter. 

- 
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The integral  may be evaluated approximately by successive integration 

by parts:  

2 e 

2 
- 9 uo - - 2 ~6 ~2 { $ (e-.. 

e 2 e 

R 
e - -  

e e a  + -. - e2 a 
28 2e* 

We reca l l  that 

so the exponentials may be expanded; i n  the integral  tern we substi tute 

Then 
2 c 

1 E2 2 s dz z e-z 
+ -  

/E 

+ O p ) }  



w h e r e  we have used the familiar resul t  

- z  
f d z  E - -  - ( r + l o g d  + a s )  
6 

where 7 i s  the Euler-Mascheroni constant. 

We will now show that the contribution of the short  range terms 

is negligible (i .e.  o( c 2 )  ). F r o m  (54), ( 4 0 )  (220) 
m2 and 5 2  

2 
e 2 (R + R 3  e La dR' R '6- R - l-)J- R, dz z S(a - z) (e- - 1) (106) 

For purposes of estimation we may replace thequare bracket (which is always 

less than one) 

obtain 

by unity and integrate by parts i n  the R in tegra l  t o  - 
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2 e 

- ~ ( R + R ’ )  

? 
We f i r s t  consider the terms involving R + R ; since 

? ?  
R + R  2 R 2 0 

so the contribution of the f irst  term i n  (107) may be estimated as 

e 2 2 
( e - r n  - 1) 

The in tegra l  may be done by integration by p a r t s ,  similar t o  the derivation 

of (104); the result i s  
c; 

1 + O ( J d 0 g  E ) 

The terms involving 

show that they are the same order. Thus 

IR - R’I are somewhat more d i f f i cu l t ,  but one can 
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While t h i s  result may seem rather  surprising, it can be understood 

qual i ta t ively as follows: While one might expect m2 (ljO) t o  be O ( J E  ), 

f o r  the par t icular  JI chosen here each fac tor  of f ( R )  effect ively 

contributes another factor  of /E (or  possibly JE log E ) on 

integration. The factor  of  the potential  gives another JE , and the 

4 n a 3  I produces a fac tor  of = JE 
5 
2 

o r  E log  E , 

short range of 9 (LO) . 
V 

H 
This suggests a t o t a l  contribution of order E 

in  agreement with' (UO). Since 

factor  of 

$j0) i s  l e s s  than 9 
JE and i s  equally short range, one a l so  has 

We now turn t o  the terms involving + D. From (45), 
m 

For + D  we subst i tute  the expression (91);. the integrals  are straight- 

forward and give 

3 5 
u = NB [ -  € + E  P - 2 + .(.')I 
071 2 4 

The second order contribution i s  
2 
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-7 la’ 5 O 2  (R’) + D 
- 2  

D 

It i s  easy to  show that the integrals  involving 

largely because of t h e i r  short range. For the others, we use the facts 

q are neglibible, 

that 

r 1 

and 

which follow from the def ini t ion (81) of 

of 

+D as a sum of convolutions 

. The use of (116), (117) i n  (115) leads to 

L 

- E 2 + o(.:>] 
6 

Where we have used (91) and (105). 
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Finally, we calculate the contribution of the "cross term", 

(ljl). Once again w e  can neglect the short  range potent ia l  J I  m2 

i n  (99); f o r  similar reasons, any terms i n  (71) containing two fac tors  

of "f" gives a negligible contribution. 

use (116), (UT), t o  obtain 

On the remainbg terms we again 

= 2% [ 6 2 + o (  3 1  
8 

Since mostauthorscalculate the Helmholtz f ree  energy instead of 

we w i l l  calculate it from the formula 

, 

F = F o + L  d h  U ( h )  , 
h 

where Fo i s  the perfect gas f ree  energy and U( h )  is  the function 

obtained by replacing e2 everywhere by e2h . F r o m  the def ini t ion 

of E, IC , we may obtain U( h ) f r o m  (120) by the substi tution 

3 
E + h  E 
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The integral  i n  (121) i s  then straightforward, and we f ind 

1 3 2 - 7 - 3  log 3 E  + ” 1  I 2  E (F - Fo) = - 

+ o( E2) } 
From (122), one may derive a l l  the thermodynamic quantit ies;  i n  

particular,  the equation of s t a t e  i s  given by 

which could a l s o  have been derived from the re la t ion  

U + -  0 p = -  
V 3v 

2 The resu l t s  (l22), (123), are  ident ica l  with those obtained by Abe 

and Friedmad, using diagrammatic techniques. 

8. Summary and Discussion 

We have developed a general method f o r  t r ea t ing  systems whose 

interact ion consists of two parts, one of which i s  short  range, and the 

other weak. 

describe an electron g a s  i n  a neutralizing background. provided the plasma 

It has fur ther  been shown t h a t  such a scheme may be used t o  
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e 

parameter is  small. Finally, expl ic i t  results have been obtained f o r  the 

thermodynamic quantit ies,  valid through second order i n  the plasma para- 

m e t e r .  This i s  believed t o  be the first such derivation based on thc nature 

of the potent ia l  rather than on topological'considerations. 

sequent paper, we show how the method may be generalized t o  handle non- 

In a sub= 

equilibrium situations.  I n  p a r t i c u l a r ,  we will derive a kinet ic  equation 

which i s  not subject t o  the usual short range divergence. 
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